
Strategic Initiatives:
Evolving Microsoft Access Applications
to Microsoft SQL Server

Learn When and How to
Upsize to SQL Server

Prepared by:
Dan Haught
Executive Vice President
FMS Professional Solutions Group
www.fmsinc.com/consulting
Toll Free (866) 367-7801
Local (703) 356-4700

http://www.fmsinc.com/consulting

Strategic IT Initiatives:
Evolving Microsoft Access Applications
to Microsoft SQL Server
Learn When and How to Upsize to SQL Server
Dan Haught, Executive Vice President of FMS, is globally recognized as a software
development expert and brings extensive experience building database applications using
state-of-the-art technology and program management to complex client engagements. Dan has
a UNIX/C programming background, and is an expert in Access, VB, SQL, .NET and web
development. He is the primary developer of several FMS products, a frequent speaker at
industry conferences, and a contributing editor to several monthly magazines including Advisor
Access/VB/SQL and ASP.NET PRO. Dan has co-authored several books on software
development, including the Microsoft Jet Database Engine Programmer's Guide (Microsoft
Press). He is responsible for new product origination, ensures that all FMS products and
solutions employ standards-based best practices, and manages the daily operations of the
development teams. Dan joined FMS in 1992.

Executive Summary
This whitepaper explores the issues related to upsizing Microsoft Access
applications to take advantage of the performance, security, and reliability of
Microsoft SQL Server. Topics discussed include:

� The Value of Access in Your Organization – a brief discussion of how
Access provides power and agility to an organization’s users

� Making the Decision: When to Upsize – an evaluation of the criteria to
decide if an application has outgrown the capabilities of access

� Microsoft Access Data Architectures – a discussion of the type of data
architectures that Access supports

� Types of Upsizing Projects – There are several approaches to upsizing.
This section shows how to determine which one is best for you.

� Planning an Upsizing Project – careful planning results in a successful
project. This section outlines what to plan for.

� FMS Expertise – FMS is a world-leader in both Access and SQL Server.
We can deliver your upsizing project on time and on budget.

Recommended Reading
For more information on Access, SQL Server, and Upsizing, we recommend:

� Access in the Enterprise
http://www.fmsinc.com/???

� When to upsize a Microsoft Access database to Microsoft SQL Server
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/off2000/html/acconWhenToUpsizeMDBtoSQLServer.asp

http://www.fmsinc.com/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/off2000/html/acconWhenToUpsizeMDBtoSQLServer.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/off2000/html/acconWhenToUpsizeMDBtoSQLServer.asp

The Value of Access in Your Organization
Mid to large size organizations have hundreds to thousands of desktop computers
in use on a daily basis. By design, each desktop has standard software that
empowers staff to accomplish computing tasks without the intervention of the
organization’s IT department. This dynamic illustrates the central value tenet of
desktop computing: empowering users to increase productivity and lower costs
through decentralizing computing.

Microsoft Access is used in almost all organizations that rely on Microsoft
Windows for desktop computing. Indeed, more desktop database data is stored in
Access MDB files than in any other format. As users become more proficient in
the operation of these applications, they begin to identify solutions to business
tasks that they themselves can implement. The natural evolution of this process is
that spreadsheets and databases are created and maintained by end-users to
handle day to day tasks.

This dynamic allows both productivity and agility as users are empowered to solve
business problems without the intervention of their organization’s Information
Technology infrastructure. Access fits perfectly into this space by providing a
desktop database environment where end-users and power users can quickly
develop database applications with tables, queries, forms and reports. Access is
ideal for low-cost single user or workgroup database applications.

But with this power comes a price. As more users call on Microsoft Access to
handle work issues, issues of data security, reliability, and management become
acute. These issues show that some of your Access-based applications need to
evolve—they need to move to a more robust environment. And when this
evolution is identified, the need for a managed plan for addressing these issues
becomes apparent.

The culmination of this evolution is upsizing—the process of moving data out of
Access and into Microsoft SQL Server, and potentially rewriting the Access
application in a more robust environment such as .NET.

This whitepaper shows you where Access fits within an organization and why it is
successful there. It also outlines the issues related to the use of Access,
information about Access data architectures, identifying when to upsize, and how
FMS can help you successfully complete your next upsizing project.

Access and SQL Data Architectures
Microsoft Access is the premier desktop database product available for Microsoft
Windows. Since its introduction in 1992, Access has provided a versatile platform
for beginners and power users to create single-user and small workgroup
database applications.

Microsoft Access has enjoyed great success because it pioneered the concept of
stepping users through difficult task with the use of Wizards. This, along with an
intuitive query designer, one of the best desktop reporting tools, and the inclusion
of macros and a coding environment, all contribute to making Access the best
choice for desktop database development.

Since Access has been designed to be easy to use and approachable, it has
never been intended as a platform for the most reliable and robust applications. In
general, you are going to consider upsizing when these attributes become
important for that application. Fortunately, the flexibility of Access allows you to
upsize to SQL Server in a variety of ways, from a quick cost-effective, data-
moving scenario to full application redesign.

Access provides a rich variety of data architectures that allow it to manage data in
a variety of ways. When considering an upsizing project, it is important to
understand the variety of ways in which Access can be configured to use its
native Jet database format or SQL Server in both single and multi-user
environments.

Access and the Jet Engine
The first important fact is that Access has its own database engine—the Microsoft
Jet Database Engine. Jet is designed as a fileshare database that supports single
and multi-user database applications with databases up to 2 GB in size.

But Access is more than a database engine—it is a development environment
that allows users to design queries, create forms and reports, and write macros
and Visual Basic code to automate the overall application. In its default
configuration, Access uses Jet internally to store its design objects such as forms,
reports, macros, and code, and also uses Jet to store all table data.

One of the key benefits of Access when it comes to upsizing is that you can
redesign your application to continue to use the forms, reports, macros and code
you have already designed in Access, and replace the Jet engine with SQL
Server. This allows the best of both worlds: the ease of use of Access, with the
reliability and security of SQL Server.

Access and SQL Server: A Quick Comparison
In order to understand some of the decision points in the upsizing decision
process, take a look at the following comparison table.

 Access SQL Server

Description A database development
environment that supports
tables, queries, forms,
reports, and programming
logic

A scalable, reliable,
and secure
client/server database
engine

Maximum Database
Size

2 gigabytes 1 terabyte

Maximum Concurrent
Users

5-15 Unlimited

Security Basic desktop security Robust enterprise
level security

Performance Limited by fileshare model Limited only by
hardware

Reliability Fairly reliable Very reliable

Access and Jet Single User
In its default configuration, Access uses the Microsoft Jet database engine to
store both object definitions and table data. Access and Jet are run on the user’s
computer, and the database is stored on a local hard disk.

Access and Jet Multi-User
Access and the Jet engine allow multi-user access. In this scenario, each user
runs a local copy of Access and Jet, and points to a shared database on a
network drive.

Access, Jet and SQL Server
Access also allows you to point to SQL Server for your data storage. In this
scenario, Access still uses Jet to run queries, store object definitions, manage
temporary tables, and hold security settings. However, all table data is stored in
SQL Server.

Using Access and SQL Server without Jet
In this scenario, the Jet engine is bypassed completely. Access 2000 and later
have the ability to directly connect to SQL Server without the need for the Jet
engine.

Making the Decision: When to Upsize
Now that you have seen the various architectures and database engine options
available, you’ll want to explore the decision points and parameters for making the
upsizing decision.

The most important part in this process is understanding that not all Access
databases need to be upsized. In fact, a majority of Access applications should

not be upsized—the cost and disruption to business is simply not a cost-effective
use of your resources. These databases work fine on a day to day basis and do
not need attributes such as scalability, security, and 100% reliability. Of all the
Access databases in your organization, only a few are candidates for upsizing.

Additionally, from the list of candidates for upsizing, a majority can be upsized
using a cost-effective process where only the data is moved to SQL Server. All of
the application’s functionality in terms of forms and reports is kept in Access. And
only the smallest percentage of upsizing projects involve rewriting the Access
application in a new environment such as .NET.

Upsizing Opportunities in a Typical Organization

No upsizing needed Upsize data Upsize application and data

The following section examines each of the key areas involved in database
planning, and discusses how Access performs in each area.

Scalability
Scalability is defined as the ability of an application to operate in an acceptable
manner as the number of users or processes calling the application increases.
Access/Jet is not a scalable solution, and scalability is often the primary
motivation for upsizing.

Maximum Database Size
Access can support up to 2 gigabytes of data. However, in many cases, this limit
is theoretical rather than practical.

� Access uses the file share-based Jet database engine. Unlike
client/server solutions such as Microsoft SQL Server, file share databases
are not optimized for large datasets. For example, an Access query that
needs to provide a total of 10,000 orders needs to pull all 10,000 orders
across the network, do the computations locally, and then provide the
total. In the client/server model, the same query is handled directly by the
server, and only the result is returned to the client application. With larger
database sizes, the file share architecture is not capable of handling data
loads.

� Jet is not designed for optimum or reliable performance with large
database sizes. Many installations will see data corruption because of
poor network connectivity or incorrectly designed applications. This
corruption occurs most frequently when Access databases begin to
exceed 100 MB in size.

Number of Concurrent Users
Microsoft Access can technically allow 255 connections per database. However,
this is a theoretical limit and cannot be attained in the real world. In reality, the
number of connections/users that an Access database can support is dictated by
how well the application was designed and implemented.

Put another way, a professionally designed and well tuned Access application can
easily support ten to twenty users with amazingly good performance. On the other
hand, a poorly executed Access application can run at a crawl with only two
users.

Unfortunately, very few Access databases are actually well designed and
implemented with best practices. This is because most Access databases are
created by beginners or power users who simply do not have the experience of
knowledge to create professional applications. They are built over time and new
features and data models are “tacked” on as the need arises. The result is an
overall solution that can never reliably support more than a few users.

Architectural Issues
Because Access uses the Jet engine for database management, it cannot scale
well by definition. Jet is limited to run on a single CPU, whereas client/server
solutions such as Microsoft SQL Server can support multiple CPUs. Additionally,
Jet queries always run on the client computer, which eliminates the centralized
query/data optimization necessary for a scalable solution.

Reliability and Availability
Reliability is one the key benchmarks to examine when considering upsizing.
Indeed, for many mission critical applications, reliability is the single most
important consideration. Microsoft Access is not intended as an inherently reliable
solution for several reasons.

Database Corruption
When Microsoft Access/Jet databases encounter an error or connection problem,
they become corrupt. A corrupt database generally locks out all users of the
database, and generally results in data loss and business disruption.

Microsoft Access/Jet databases are prone to corruption for a number of reasons.
Since Access/Jet uses a file share model, all users are concurrently holding active
connections to data. If any one of those users unexpectedly loses the connection,
especially during a data update process, the database can become corrupt. This
can happen if the user’s network connection is intermittent, driver versions are not
up to date, or if multiple versions of the Jet DLLs are used to read the same
database file.

Microsoft Access includes a Compact/Repair utility, but data corruption is usually
not fixed by this utility. Third party repair services are available, but this requires
sending the affected database off to another location, paying a fee, and waiting
for it to be returned. In a best case scenario, 90% of the last changes will be
intact, leaving another 10% permanently lost.

Backup and Maintenance Issues
Because Access uses the file share model, the entire database is locked at the
file level as soon as it is accessed by the first user. This means that there are no
reliable mechanisms for performing backups of the database file unless all users
are disconnected.

In a multi-user environment, it is often difficult to coordinate the process of
ensuring all users log off of an Access application before making a backup.
Typical scenarios involve users leaving their computers on when they leave the
office for the day. This leaves the database open, and backup software will not be
able to reliably copy the database file. Often, this is only detected after the backup
fails, leaving the system administrator to track down the problem and hope it is
resolved before the next backup runs.

Additionally, Microsoft Access is not self-tuning. It does not automatically reclaim
lost database space, or optimize indexes and queries. This maintenance can be
performed by running the repair/compact utility, but this also requires that all
users be logged out of the database.

Since many Access databases are stored locally on user machines, they are often
not included in any type of backup or maintenance plan.

Different Versions of Access and Jet
Microsoft Access has strong dependencies on specific versions of the Jet Engine,
and other related data access components. For example, if you create a database
with Access 97, it can be opened with Access 2000 which will then make it
unavailable to Access 97 users. Additionally, if new versions of standard Microsoft
data access components such as DAO and ADO are installed, they may make
existing Access applications fail. This is especially true in multi-user situations.

This lack of backward compatibility between driver versions often precludes
organizations to upgrading to newer versions of Office, since a new version of
Access can likely cause existing Access applications to stop working.

Security
Microsoft Access offers three different security mechanisms.

1. Database Passwords: You can assign a password to a database. Only users
who know the password can open the MDB file.

2. Jet Workgroup Security: Users, groups, and object permissions can be
defined and shared across multiple workgroups.

3. File Encryption: contents of the database can be encrypted at the file level.

Unfortunately, these mechanisms are neither robust nor reliable. Database
passwords use a very simple encryption mechanism. In fact, removing an Access
database password is simple matter given that free and commercial password
“removers” are easily available on the web. While Access users may not be
concerned about such lapses, IT managers certainly should be.

And while Jet Workgroup Security is more robust, it still leaves the contents of the
entire MDB database open from the file system. Since all table data and code is
stored in plain view, it is a trivial matter to open an MDB file in a string-compatible
editor and view code, passwords, and table data.

Finally, because Access requires full read permissions for all users to the actual
database file, anyone who can see a shared network drive can walk off with the
database on a disk or CDR, or email it outside of your organization.

Upsizing Scenarios
When contemplating an Access upsizing project, it is important to understand that
there are a variety of upsizing methodologies. These range from simple data

moving, to complete re-architecture and redesign. In order to choose the correct
path for your upsizing project, you should be familiar with the three types of data
architecture that Access supports.

This section outlines the upsizing scenarios and provides details about the
benefits and drawbacks of each approach. The following scenarios are examined:

Scenario Description % Of
Existing
Databases

Already Right-sized Many Access databases do not need
to be upsized.

90%

Upsize Data Only Leave application design and logic in
Access, and move data to SQL
Server.

7%

Upsize Application
and Data using
Access

Rewrite the application in Access
using an Access Data Project, remove
the need for Jet entirely, and move
data to SQL Server.

2%

Upsizing Application
and Data using
.NET technologies

Rewrite the application using Visual
Studio .NET for Windows and/or web
access, and move data to SQL Server

1%

Scenario 1: Already Right-sized
If you were to inventory the use of Access in your organization, you would likely
find hundreds to thousands of MDB databases scattered across computers and
network drives. These databases run the gamut from simple lists built by staff
members, to workgroup-level multi-user applications.

With database counts that run into the hundreds, and given the potential cost and
disruption to business that upsizing may involve, it is obvious that only a small
subset of the total should be candidates for upsizing.

The first rule of upsizing is that the large majority of your databases should not be
upsized: the cost is prohibitive. And even if you had the resources to upsize a
majority of your Access databases, there would be no real gain. Simple lists or
reports used by a single person typically do not fall into the realm of mission
critical applications. Indeed, these types of applications are what Access is
designed for, and are well within its capabilities.

Finally, many of the databases you would find in a typical inventory process may
not have been used for 6 months to a year. These obsolete databases are no
longer important to your organization, and other than for archival purposes, are
not candidates for upsizing.

The key advantage to this scenario is that you don’t have to do anything; no cost
no business disruption. The disadvantage is that Access/Jet based solutions
cannot scale and do not enjoy the reliability and security of SQL Server. But that
is typically not an issue for the majority of your Access databases.

Advantages Disadvantages

� Cost: no additional software is
needed, since Jet is included with
Access

� Ease of use: no SQL Server
knowledge required

 � Limited scalability

� Limited security

� Limited number of users

� Lowest development costs � Limited reliability

� Jet databases prone to failure if
new versions of Office, Access,
Jet, or data access components
are installed

Scenario 2: Upsize Data Only
Because Access has the ability to link to SQL Server for table data, migrating only
the data is one of the best balances between cost and advantages. In this
scenario, you move all table data to SQL Server and leave all forms, reports,
queries, macros and logic in the existing Access database.

The key benefit of this scenario is that it is the quickest and most cost effective
because it has the least impact on existing application logic. Very few, if any parts
of the existing application need to be changed. With a small investment, you can
gain the reliability and maintenance benefits of SQL Server and keep your Access
investment in place.

The largest disadvantage of this approach is that all access to SQL Server
happens through the Jet engine. This is because the Jet engine must translate
every query and data access operation from its native format to SQL compliant
commands. This translation adds overhead in performance, and uses additional
SQL connections which can lead to additional SQL license purchases.

Scenario 2 is best for Access applications with a small number of users and small
database sizes.

Advantages Disadvantages

� Lowest cost upsizing project

� Data is located in SQL Server
offering security, scalability, and
reliability

 � Using Jet as a layer on top of SQL
Server may provide slow
performance

� Multiple copies of local MDB
require synchronization

� Local MDB databases offer limited
security, scalability, and reliability

� Since Jet is still used, local
databases susceptible to failure if
new versions of Access, Jet, or
data access components are
installed

Scenario 3: Upsize Application and Data using Access
If you are planning to upsize an Access application and performance and
scalability are as important as the other benefits (reliability, security, maintenance,
etc), you may want to consider not only moving to SQL Server for your data, but
rewriting your Access application to remove the Jet engine from the equation.

You can do this by using the Access Data Project format that is available in
Access 2000 and later. Access Data Projects allow the same use for forms,
reports, macros, code, and intuitive design tools available for standard Access
databases. However, they directly connect to SQL Server for data access.

There are two situations where you would consider this scenario:

1. An existing Access application is using Jet only and needs to be upsized to
SQL Server in a way that offers optimum performance and scalability.

2. An existing Access application is connected to SQL Server through Jet and
needs better performance and fewer SQL Server connections.

The major benefit of this scenario is that it results in an Access application that
provides the best performance and scalability, on top of all the other positive
attributes of SQL Server.

The major drawback to this approach is that it requires more development effort
because Access objects such as forms, reports, queries, and code need to be
redesigned to work directly with SQL Server.

Advantages Disadvantages

� Enjoy all the benefits of SQL
Server, including performance and
scalability.

� Data is located in SQL Server
offering security and reliability

 � Cost of redesigning application
logic and retesting. Of course, this
is offset by the improvements
gained.

Scenario 4: Upsizing Application and Data using .NET technologies
When an existing Access application outgrows Access, it can do so in a major
way. Access is no longer able to keep up with your organization’s needs for data
capacity and performance. Or you may need to migrate all or part of an
application to the web. There are a small percentage of Access upsizing projects
that can only be successfully completed by migrating out of Access altogether.

In this scenario, the Access application is used as the beginning roadmap for a
completely new design. Additional technologies such as Visual Basic, Active
Server Pages, and/or Visual Studio .NET are employed to rewrite the application
from the ground up. As a natural matter of course, the data moves to SQL Server.
Additionally, you can consider migrating other data sources, such as Oracle and
DB2 into SQL Server for a centrally managed solution.

The key advantage of this approach is flexibility. You can create an application
that can target Windows desktops and the Web with minimum changes. A more
professional development environment such as Visual Studio .NET offers
advantages such as team based management, source code control, and
professional tools and components available from a rich array of third party
vendors. With this scenario, you end up with a reliable, scalable, and manageable
application that can move from the business unit to the enterprise level.

The key disadvantage of this approach is cost. Since you are ultimately discarding
the Access application and its database, you are creating a new application with a
new design, development and implementation project. Fortunately, only a small
majority of Access applications require this level of effort.

Advantages Disadvantages

� Flexibility: application can target
Windows, Web, and more

� Scalability and reliability: using
.NET development technologies
with SQL Server offer the best mid-
business and enterprise level

 � Highest cost

� Retraining of staff

� New application testing

� Additional developer expertise

return on investment

� Ease of Management: Versions of
Access no longer play any role in
the application’s ability (or inability)
to be used across the enterprise.

Inventorying Access Databases in Your Organization
One of the biggest challenges your organization may face is identifying how many
Access databases you have, and which ones should be upsized. The problem is
where to start—how do you efficiently inventory your Access databases just to get
an initial handle on the problem? Even with conservative estimates, an
organization with 500 deployed desktops may potentially have 10,000 Access
databases.

There are several strategies for solving this problem. The simplest route is to
communicate with desktop users, usually through an email message, and ask for
basic feedback on each user’s database inventory.

� How many Access databases do you currently use?

� How many tables are in these databases?

� Do you share this database with other users?

� Do you link to, or use import/export on, corporate data?

� Are your databases being backed up?

A well defined (and brief) set of questions will help you identify which databases
may be at risk:

For larger organizations, a better managed approach is to implement a system
that can automatically inventory and report on Access databases. Using a
desktop agent that regularly inventories local and network hard drives, in
combination with a centralized server reporting application, can provide tangible
benefits for an organization’s need to manage desktop data, and schedule
upsizing projects.

FMS provides products and services that allow such automated management
functions. For more information, visit www.fmsinc.com/????.

Planning an Upsizing Project
To avoid unnecessary costs, ensure application availability, and minimize risks, it
is important to carefully plan your Access upsizing project. The amount of
planning is directly related to the type of upsizing project you envision. For
example, a simple migration of data to SQL Server requires less planning that a
complete rewrite of the application and data migration. This section provides
guidelines and best practices for planning your upsizing project.

Phase 1: Design and Planning

Choose Your Upsizing Scenario
Your level of planning and overall effort is directly related to which upsizing
scenario you choose. For example, upsizing data to SQL server while leaving the
Access front-end in place requires less effort, but yields fewer benefits. Once you
have chosen your plan, be sure to clearly state goals, timeline, and budget.

http://www.fmsinc.com/

Identify a SQL Server Installation
Once you choose to upsize an Access application, you will need to either identify
an existing SQL Server installation to use, or plan to create one. SQL Server
comes in a variety of editions, from the freely available Microsoft Database
Engine (MSDE) to SQL Server Enterprise edition. In general, all editions of SQL
Server, including MSDE, are capable of handling small workgroup applications
involving 1-20 users. If you are upsizing both the application and the database,
and your needs call for the greatest scalability, functionality, and reliability,
consider using the Enterprise Edition.

Administration
Before your upsizing project is deployed, you should have an administrative plan
in place for your new SQL Server data. Planning for this before the rollout is key.
Installing SQL Server and creating objects is only part of the equation. You should
define backups schedules, fault tolerance parameters (as needed), and
administrative staff who are responsible for the database component.

Development Plan
Create a development plan that covers each aspect of the Access application that
must be changed. If you are only planning to upsize the data to SQL Server, there
are still parts of the Access front-end that may need to change. For example, the
Jet database engine uses different data types, and a different SQL grammar than
does SQL Server. Plan to identify any areas of incompatibility and change Access
objects as needed. If your scenario calls for a complete rewrite of the Access
application in a different environment, such as .NET, you need to approach the
project as full lifecycle software development effort and plan accordingly. Finally,
be sure to identify risk areas such as data destabilization or loss that could
potentially occur, and have a proactive plan in place to address them.

Evaluate the Microsoft Upsizing Wizard
Microsoft provides an upsizing wizard that allows semi-automatic upsizing of
Access to SQL Server. Unfortunately, this wizard is quite limited in its ability to
create usable SQL Server-based applications. When you are contemplating and
upsizing project, you can certainly plan to use the Microsoft upsizing wizard as a
starting point. However, for all but the most simple (i.e. Scenario 2) upsizing
projects, the upsizing wizard will only accomplish about 40% of the work. This
section describes the limitations you can encounter with the Microsoft Upsizing
Wizard.

Issue Description

Non-standard
table/field names

Jet and SQL use different naming standards. The
upsizing wizard can find some, but not all. And those
that it does find and rename will not work in any
existing code.

Differences in SQL

Access/Jet uses its own dialect of SQL that is different
from the ANSI SQL supported by SQL Server. Many
Jet-based queries cannot run on SQL Server without
rewriting.

Data type
conversion issues

Access/Jet has its own standards for data types that
are different in some cases from SQL Server. The
upsizing wizard can make some choices for you in
terms of converting data types, but changes require
developer review.

Architectural Issues

The Microsoft upsizing wizards cannot rewrite your
application to work correctly with the SQL Server
client/server model. Almost all Access/Jet applications

are designed to work with the fileshare model of Jet.
These designs do not lend themselves well to the
client/server model and can result in poor
performance.

Code Not Converted

The upsizing wizard does not convert any of the VBA
code in your application. This can result in serious
errors as parts of your application point to SQL Server
while your code still points to an Access/Jet database.

Items not Upsized The Microsoft upsizing wizard does not convert any of
the following objects: hidden objects, security settings,
Format and InputMask properties, Table/Field caption
properties, table lookup fields, cross-tab queries,
action queries that take parameters, many query
properties, macros, and module code

In general, consider using the Microsoft Upsizing Wizard as a starting point, or for
proof of concept phases. However, it cannot be relied on to actually upsize an
application in the correct way.

Phase 2: Implementation

Configure SQL Server
Use the data diagram that is part of your development plan to implement the first
version of SQL Server objects, such as tables, views, and stored procedures.
Implement users, groups, and roles as needed. It is important to have these
objects in place before development starts—developers can’t work against a SQL
Server backend that isn’t there. Don’t worry about performance optimization yet,
that happens later.

Development
Based on your development plan, staff your development team and provide the
resources necessary. Make the existing Access application available to the team
for use a benchmark or prototype resource. Keep an eye on the milestones and
risk areas defined in your planning process.

Testing
Before the first test deployment of the new application, basic developer-based
testing should occur. Use the existing Access application as a model to reduce
the amount of time needed for the initial testing effort. Compare each functional
area in the original Access application against the new code base. If you are
completely rewriting the Access front end application as well as moving the data,
you should plan to involve dedicated quality assurance/testing staff to find critical
errors.

Documentation
Most Access applications are created by end users, and as such, lack
documentation. Since you are investing in the process of upsizing, now is a good
time to spend some time documenting the new application. At a minimum, create
a configuration and troubleshooting document that outlines where the
application’s component parts reside, desktop and network settings, and basic
troubleshooting techniques based on the results of your testing plan. If you have
the resources, you may want to consider more complete documentation in the
form of data diagrams, flowcharts, code listings, etc.

Training
When you take an existing in-production application and change or rewrite it, you
must plan to ensure that the application’s users are on board. Depending on the
scope of the changes involved in the upsizing project, training for the application’s
users may involve a few hours of walkthroughs, to a full formal training regimen
with the associated training guides and documentation. Good training is crucial if
you want to get the buy-in of the application’s users.

Rollout
Your first rollout of the application is typically deployed to a subset of the entire
user population. Select a small group of users and employ them as the beta-
testers. The obvious goal is to verify the planning and development work—does
the new application work correctly? Beyond that, user feedback may help identify
any last minute issues not addressed in the planning and implementation process.
Users can also provide invaluable information regarding usability.

Once you have been through initial testing, and made any necessary changes or
fixes, roll the application out to the entire user base. Depending on the number of
users in the application, and the importance and currency of the data, you may
want to consider running the old Access-based system in tandem with the new
system for a period of time. This provides an extra degree of security should the
new application experience problems.

Phase 3: Stabilization
Once the new application is in production use for all users, the project enters the
stabilization period. Defects are identified by users and fixes are planned. Users
will also see opportunities for new functionality (as is the case with any
application) and these should be duly noted by management. Ongoing support to
users is important since an upsizing project often results in application attributes
that are no longer under the control of the end user (i.e. SQL Server).

During this period, you should also monitor performance, not only in terms of what
users may be reporting as slow, but active monitoring of SQL Server using tools
such as the query analyzer and performance counters.

FMS Expertise
When Microsoft decided to engage a certified partner to lend technical expertise
and support for its Access to SQL Server 2000 Upsizing campaign, FMS was at
the top of the list. We have focused on the Microsoft technology platform
throughout our history, and remain one of the most trusted advisors to several
Microsoft development teams today. Our reputation is one of consistent,
thorough, and significant involvement in all aspects of the software development
community, and our products have won some 40 industry awards thus far.

Since the first release of MS Access in 1992, FMS has been providing award winning
Access development software tools to the programming community. Now known
around the world as the preeminent supplier of third party Access software, FMS has
continually been on the forefront of Access innovation since the beginning. In fact,
Luke Chung, our president and founder, is listed on Microsoft’s website as a ‘Top
Ten Access Hero’ for his support and early adoption of the best selling database
program (http://www.microsoft.com/office/access/10years/chung.asp).

http://www.microsoft.com/office/access/10years/chung.asp

Equally important, we have been developing reliable high performance database
systems using Microsoft SQL Server Since version 4.2 (in 1993). Our team has
extensive experience in data normalization techniques, best practices for database
design, and a deep internal knowledge of how SQL Server works. We have
implemented everything from small-scale workgroup solutions, to highly scalable
ecommerce business sites using SQL Server. Additionally, our Developer Tools
Group has two developer products specifically for SQL Server, award-winning Total
SQL Analyzer Pro and Total SQL Statistics. You can also read about FMS on the
Microsoft SQL Server Site.

Conclusion
Database evolution should be expected and it is a normal course in any
company’s usual business development. The importance, size, and / or user
accessibility (growth) of a particular application often can exceed its original
concept or development platform. While most Access applications can spend
their entire useful life functioning perfectly well, some should be migrated to more
secure and robust platforms. Knowing which Access databases are candidates
for upsizing and exactly how to perform the migration can prove challenging to
even the most experienced network manager.

By keeping the Access application and data within the Microsoft family of products
(e.g., Access to SQL Server 2000), and engaging an experienced technology
partner like FMS, the process can be quite manageable, and cost effective.

http://www.fmsinc.com/Products/sqlanalyzer
http://www.fmsinc.com/Products/sqlanalyzer
http://www.fmsinc.com/Products/SQLStats
http://www.microsoft.com/sql/partners/complementary.asp
http://www.microsoft.com/sql/partners/complementary.asp

	Executive Summary
	
	Recommended Reading

	The Value of Access in Your Organization
	Access and SQL Data Architectures
	
	Access and the Jet Engine
	Access and SQL Server: A Quick Comparison
	Access and Jet Single User
	Access and Jet Multi-User
	Access, Jet and SQL Server
	Using Access and SQL Server without Jet

	Making the Decision: When to Upsize
	
	Scalability
	Maximum Database Size
	Number of Concurrent Users
	Architectural Issues

	Reliability and Availability
	Database Corruption
	Backup and Maintenance Issues
	Different Versions of Access and Jet

	Security

	Upsizing Scenarios
	
	Scenario 1: Already Right-sized
	Scenario 2: Upsize Data Only
	Scenario 3: Upsize Application and Data using Access
	Scenario 4: Upsizing Application and Data using .NET technologies
	Inventorying Access Databases in Your Organization

	Planning an Upsizing Project
	
	Phase 1: Design and Planning
	Choose Your Upsizing Scenario
	Identify a SQL Server Installation
	Administration
	Development Plan
	Evaluate the Microsoft Upsizing Wizard

	Phase 2: Implementation
	Configure SQL Server
	Development
	Testing
	Documentation
	Training
	Rollout

	Phase 3: Stabilization

	FMS Expertise
	Conclusion

