Access Development

* ADO

* Access 2000/97
* Visual Basic 6.0

24 ACCESS-VB-SQL ADVISOR - SEPTEMBER 2001

Display Self-Relational
Data in a Microsoft

TreeView

Add greater functionality to your Access and Visual Basic
applications with the Microsoft TreeView.

By Steve Clark

his article is part two of three in

a series describing the storage and

usage of self-relational data. The first

article (August 2001) focused on the
storage and retrieval of self-relational data
was the primary focus. In this article, I show
you how to display hierarchical data using
a Microsoft TreeView control. Also, I use
the ImageList control to demonstrate how
to specify which icons to display in the
TreeView.

For this article, I created examples using
ADO, so I assume you're working with
Access 2000. But, you can also incorporate the
TreeView code and techniques in this article
into your Access 97 applications as well. The
application I developed for my client was
in Access 97.

Build on what you know

Before we get started, there
is some unfinished business
from the first article. For those

first article, you needed to add a third occur-
rence of the Employees table, create the Right
Outer Join, and add the Next level supervi-
sor's name (listing 1). The results are shown
in figure 1. Table 1 lists the employees and
their supervisors.

Listing 1: SQL statement—Use this code to dis-
play all employees and two levels of supervisors.

SELECT Employees.lLastName,
Employees.FirstName,
Supervisor.LastName AS SupervisorLastName,
SupSup.LastName AS SupSupLName
FROM (Employees AS SupSup

RIGHT JOIN Employees AS Supervisor
ON SupSup.EmployeelD =
Supervisor.ReportsTo)

RIGHT JOIN Employees

ON Supervisor.EmployeelD =
Employees.ReportsTo;

Continued

of you returning, you were

given two problems to solve.
The first assignment was to

display all employees, their
supervisor, and their supervi-

sor's supervisor. Building on Figyre 1: Query design—This displays all employees and two
what you had learned in the levels of supervisors.

« Code Delivery * Message Box Builder » Clear Immediate Window * Code Builders * New Procedure Builder «

Steve Clark is a Senior Systems Analyst on the FMS, Inc. Custom Database Solutions Team. The team creates cus-
tom database solutions using VB, SQL Server, Microsoft Access, Excel, Word, and FrontPage, as well as ASP,
Cold Fusion, XML, and soon VB.NET. Steve has a Bachelor of Science in Computer Science from the University of
Cincinnati. Steve.Clark@FMSInc.com.

ADVISOR.COM

n
@
-
@
=
]
=
(=]
2
Q
a
2
o
°
=
=
>
<
=
©
o
E
o
(&
)
@
Q
o
=
[
=
(=]
2
@
—
]
o
]
4
]
]
=
@
(=]
.
w
@
o
]
£
o
»
3
©
]
=
=
(™
]
@
=
Y
(=]

Co

- -

= Zu

[PN QA | e T AR

o8 /2

[

...-:rrrrrnlllllll!-lln

Table 1: Results—Data results of employees and two levels of
Supervisors.

Last Name First Name Supervisor SupSupL
LastName Name

Davolio Nancy Fuller

Fuller Andrew

Leverling Janet Fuller

Peacock Margaret Fuller

Buchanan Steve Fuller

Suyama Michael Buchanan Fuller

King Robert Buchanan Fuller

Callahan Laura Fuller

Dodsworth Anne Buchanan Fuller

The second homework question was how would you dis-
play all companies, as well as any of the companies that it
owns. In table 2, you can see the data model in question,
where tblCompany stores each of the companies, and
tblOwnership maintains the information of which companies
own which other companies.

Table 2: Data model—This table is created using data from the
previous article.

tbiCompany thbiOwnership
CompanylD OwneriD
CompanyName ChildiD
CompanyFax UnitsOfOwnership
CompanyTel

etc..

Since you need to see all the companies, you have to make a
Left Join from Company to Ownership, and to get the owned
company's name (or other non-primary key information), you
need to continue the relationship from Ownership to another
occurrence of the Company table, this time using a Right Join.
Listing 2 shows the SQL to accomplish this, and figure 2 shows
the end result in the Query design view.

Listing 2: All companies—This SQL statement displays all compa-
nies and any others they own.

SELECT Owner.CompanyName

AS OwnerName,

Child.CompanyName AS ChildName

FROM tbiCompany AS Child

RIGHT . JOIN (tbl1Company AS Owner

LEFT JOIN tb10Ownership

ON Owner.CompanyID = tbl10Ownership.OwnerID)
ON Child.CompanyID = tbl10Ownership.ChildID

Microsoft TreeView control

Now that you better understand the storage and retrieval
of self-relational data, the next step is to focus on displaying
the data using a Microsoft TreeView control. Examples of
TreeView controls can be found in Windows Explorer,
Outlook, and many custom applications where a hierarchy
exists. The TreeView control is shipped with most versions of
Visual Basic and can also be found in all versions of the
Microsoft Office Developers Edition (ODE).

26 ACCESS-VB-SQL ADVISOR - SEPTEMBER 2001

Access Development ¢ Display Self-Relational Data in a Microsoft TreeView

¥ gryOwnership : Select Query

Figure 2: All companies—Query Design to display all companies
and any others they own.

To implement the TreeView, you must first create a form and
insert the TreeView ActiveX control. After the control is
placed, it should be named and sized to your desired values.
To insert the Microsoft TreeView control:

1. Select "Insert" from the Main Menu

2. Select "ActiveX Control..."
3. Select the Microsoft TreeView control

For this article, I use the TreeView control from Visual Basic
version 6.0 with Service Pack 4, but most versions should
behave the same. After closing the dialog, the control will be
inserted on your form. Change the name to tvxEmployees
because you'll be using this control later.

Next, add an ImageList control to the form so you can add
icons to the TreeView display. Using the ActiveX controls dia-
log, add an ImageList control to the form as well.

Customize the ImagelList control

The ImageList control is a storage area for pictures that
the TreeView references when it needs to display either
the selected or non-selected item. To specify the desired
images to be used, right-click on the image control, select
ImageListCtr]l Object, then select Properties.

This opens the ImageListCtrl Properties dialog. Here is
where you specify the attributes of the icons, as well as the
icons themselves. On the General tab, you can select the size
of the icons. I recommend the 16 x 16 choice, as it is the small-
est, and most non-obtrusive choice. The Images tab is where
you specify the desired images, and the colors tab lets you
play with the colors of the icons.

To add an image to the Image List control, click on the
Images Tab and click on the Insert Picture button. This opens
the standard Windows File Open dialog, and you can navi-
gate to your favorite opened and closed icons.

After you have saved the icons in the ImageList, you must
alert the TreeView that this is the ImageList you would like to
use for it. It is possible to have more than one ImageList per
form, so be specific.

To associate the Image List control to the TreeView control,
right-click on the TreeView control object, select the TreeCtrl
Object option, and select the Properties choice. This will open
the Properties dialog, where you can customize the behavior

ADVISOR.COM

ata while Users are in the Database * Track Objects and Records * Manage Muitiple MDBs -

« Backup D

Figure 3: Display icons—Here you can specify the icons to display
on the TreeView control.

of the TreeView (figure 3). Locate the ImageList property, and
set it to the name of the control.

Mission objective: Employee TreeView

Let's create a TreeView of employees where the first level of
" data are all supervisors, and all subsequent levels of data are
employees assigned to that supervisor.

Populating the TreeView control

Any entry in a TreeView is considered a node. To populate
the tree with nodes of your data, you will need to use the
.Add method of the Nodes collection of the TreeView control.
For example:
tvx.Nodes.Add Key:="S105", Text:="Ulrich, John", _

Image:= 1, SelectedImage:=2

This example will add the text "Ulrich, John," to the top level
of the tree, assigned to the TreeView object variable tvx, and
assign to it a unique key of S105. Image and Selected Image val-
ues come from the ImageList control. When an image is inserted
into the ImageList control, each image has an index automati-
cally entered. Image is used when the node isn't selected,
SelectedImage is used when the node is the current node.

It is important to note at this point that the Key parameter is
of type Text, and it must start with a letter. In this example,
the letter S is used to represent a supervisor. To make matters
more complicated, the key must be unique, so if any values in
your data have the possibility of repeating, you have to plan
for it. This will be dealt with later in code, but it's something
to prepare for.

Populating the top level

When you populate your tree, there may be hundreds of
records, or hundreds of thousands of records. Depending on
your situation, you may not be able to populate the entire tree
at once, as it may be too time consuming at startup for the
user. In this case, implementing an "On Demand" approach
will mean waiting until the user opens a node before attempt-
ing to gather the child data for it.

28 ACCESS-VB-SQL ADVISOR - SEPTEMBER 2001

Code disclaimer: Naming conventions and error trapping. I
use the prefix tvx for a TreeView to differentiate between cus-
tom objects I've made and the intrinsic constants used by Access.
For example, tvwChild denotes the index of the first child node
of a parent. So, it makes life easier when attempting to use Auto
List Members (Ctrl-Space) to find your own objects. I assume
you'll include your own error trapping system, so I have omit-
ted it from my coding examples. If you're using the Northwind
database that ships with Access 2000, be sure to add a reference
to the "Microsoft ActiveX Data Object 2.1 Library” or else the
ADO code in listing 3 won't compile.

For the supervisor-to-employee example, the top level will
be all the supervisors. First, you must load all the supervisors,
then wait for the user to expand a supervisor node, prior to
gathering any employee information.

ShowSupervisors()

Listing 3 assumes you're using the Northwind database and
the Employees table. In the first article, you added a Yes/No
field called Supervisor and a created a query called
glkpSupervisors. On a form, you added a TreeView
and ImageList control. The TreeView control is named
tvxEmployees. The ImageList has two pictures inserted with
the indexes of 1 and 2.

Listing 3: ShowSupervisors()—This code populates the top level of
the tree with supervisor information.

Sub ShowSupervisors()

‘Notice that MSComctlLib must be used
Dim tvx As MSComctiLib.TreeView
Dim rst As ADODB.Recordset

'Notice that .Object must be used to make Auto List
'Member appear.

Set tvx = tvxEmployees.Object

Set rst = New ADODB.Recordset

With rst
'Open the Supervisor Lookup Query
.Open "qlkpSupervisors™, _
Application.CurrentProject.Connection

Do While Not .EOF
'Make Key = "S"™ & EmpID, and Display LN, FN.
tvx.Nodes.Add Key:="S" & !EmployeelD, _

Text:=!LastName & ", " & !FirstName, 1, 2

'Go to next Supervisor.
.MoveNext

Loop

End With

End Sub

To trigger this code, call the ShowSupervisors procedure
from the Form's On Load event property:

Private Sub Form_Load()
ShowSupervisors
End Sub

Populate the children on demand

With the top level in place, the user can click on a supervisor
and reveal the employees, except that there is no data there to
display, as it hasn't yet been populated. To populate a super-
visor's employees on demand, you can execute a populating
procedure when the user triggers either the NodeClick or
Expand event property of the TreeView control. Note: The
TreeView has both a Click and a NodeClick property. If you

ADVISOR.COM

need to trap for a particular node, you must use NodeClick.
The Click event property is used for the entire TreeView.

In the following procedure headers, a Node object is exposed
as a parameter so you can reference which node was triggered:
Private Sub tvxEmployees_Expand(ByVal Node As Object)
Private Sub tvxEmployees_NodeClick(ByVal Node As Object)

Note: Because the TreeView is an ActiveX control, you can't
generate the above procedure headers from the form's prop-
erty window. To create them, open the Code Editor window,
select the TreeView control name from the Object combo box
on the left side, then select either Expand or NodeClick from
the Event combo box on the right side.

Suppose the user has clicked on a Supervisor node. This can
be used as the trigger to populate the supervisor with all his
or her employees. Using the TreeView's NodeClick event
properties, a call to a user-defined procedure called
ShowEmployees can populate the data using the exposed
node as the parent.

Private Sub tvxEmployees_NodeClick(ByVal Node As Object)
ShowEmployees Node
End Sub

The code for ShowEmployees is in listing 4.

Adding a child node

In a previous example of the .Add method, nodes were
added to the top level of the TreeView. Now, let's add nodes as
children of existing nodes. To accomplish this, there are two

ROCK SOLID

INSTALLATIONS

We specialize in building and
troubleshooting Installations.

@ SageKey

www.sagekey.com
1-888-248-0055

32 ACCESS-VB-SQL ADVISOR - SEPTEMBER 2001

Access Development ¢ Display Self-Relational Data in a Microsoft TreeView

other parameters of the .Add method that specify the Parent
node to be used and the relationship between new node and

the existing one. For example:

tvx.Nodes.Add nodParent.Index,
John",

tvwChild, "E205™, "Ulrich,

1 g

With this example, the index of the parent node is specified,

and the relationship is defined using the intrinsic constant

tvwChild. This example is used in listing 4 with the node-
passed to the procedure as the parent node. Table 3 defines
the node properties used in listing 4.

Listing 4: Add a child node—Populate the employees for a
selected supervisor.

Sub ShowEmployees(pnod As Node)

Dim
Dim
Dim
Dim
Dim
Dim

‘Used to generate a unique ID.
Static sIingCnt As Long

Set
Set
Set

tvx As MSComctlLib.TreeView

cnn As ADODB.Connection

cmd As ADODB.Command

rst As ADODB.Recordset

intPos As String !
strEmpID As String |

tvx = tvxEmployees.Object
cnn = Application.CurrentProject.Connection
cmd = New ADODB.Command

'Check if already populated.

If pnod.Children = 0 Then
'Even if no children, we may have attempted i
'to populate previously.
If len(pnod.Tag) = 0 Then

End If 'pnod.Tag = vbNullString

End

End Sub

—“

'Extract the EmployeelD from .Key.
If Left$(pnod.Key, 1) = "S"™ Then |
"Extract EmpID from the format "SiHHE" |
strEmpID = Mid$(pnod.Key, 2)
Else
'Find the period.
intPos = InStr(pnod.Key, ".") -1
'Extract the EmpID from the format "EfHHE.1HF".
strEmpID = Mid$(pnod.Key, 2, intPos)
End If

'Prepare the query to extract children info.
Set cmd.ActiveConnection = cnn
cmd.CommandType = adCmdText
cmd.CommandText = _
"SELECT * FROM Employees WHERE ReportsTo = _
" & strEmpID

Set rst = New ADODB.Recordset
With rst
'Get children for this employee.
.Open cmd
Do While Not .EOF
'Make Key = E + EmpID + Period(.) + UniquelD
'and display Lastname, Firstname.
tvx.Nodes.Add pnod.Index, tvwChild, _
"E"™ & !EmployeelID & "." & slingCnt,
ILastName & ", " & !FirstName, 1, 2 |
'Bump unique index.
slngCnt = sIngCnt + 1
'Go to next child.
.MoveNext
Loop

End With

'Mark node as populated.

pnod.Tag = "X"

If pnod.Children > 0 Then
'Ensure that first child is visible.
pnod.Child.EnsureVisible

End If 'pnod.Children > 0

If 'pnod.Children = 0

ADVISOR.COM

There are several techniques used in this procedure that
need further explanation, such as marking the node as popu-
lated, and creating a unique key for each node, while incor-
porating the EmployeelD for later reference.

A node is marked as populated by setting the node's tag
property with the character "X." This technique is included
because you can attempt to populate a node, but it doesn't
have any children. If the user attempts to populate this node
again, you'll see that it has none, and cease any further pro-
cessing. This flag saves you time by preventing unnecessary
data accessing. When a parent node is passed to the
ShowEmployees procedure, you need to know the parent's
EmployeelD, so you can create the query to find the correct
children. So, adding the EmployeelD to the key seems like the
best way to retain the information for later use. I would have
used the tag property, but it was already assigned a task.

Because each employee has the possibility of being in the
tree more than once, a plan must be devised to ensure that all
node keys would be unique. First, all keys must start with
a letter, so E was chosen to represent employee. From there,
you add the EmployeelD. Unfortunately, you can't stop
there because "E101" won't be a unique key of the employee
appears in the tree again. To ensure a unique key, I add
a unique ID by maintaining a static variable throughout
the life of the form. So, after the EmployeelD, add a period
and the unique ID (i.e., E101.56). Later, when you need to call

Table 3: Nodes—These are the node properties used in code
and their descriptions.

.Index — Unique Number assigned to a node by VBA

Key - Unique Value assigned by developer, must start with a letter
.Children — Number of children a node has

.Child - The first Child Node of a parent

.Tag - Text field for any use

.EnsureVisible - Make node visble in TreeView

the EmployeelD, you can extract all the characters after the E,
but before the period using a series of string manipulation
functions.
Wrap up

Now that you've been exposed to the inner workings of the
TreeView control, you can see that adding a significant
amount of functionality (and cool eye candy) to your Access
or Visual Basic applications can be done without extensive
programming. The TreeView object is easy to manipulate,
even with minimal amount of knowledge of its inherent prop-
erties. It is useful in self-relating situations, but can also be
incorporated in more simple situations, such as customers to
orders to order details.

In the next article, I'll show you how to export the self-relat-
ing data to an Excel file and use Microsoft Visio to produce an
organizational chart from it. EWTETI

NEED PROFESSIONAL HELP?

We are experts in the following fields:

web:
email:

*Unique ability to deliver fast, complex database-related Web sites.

Whether you need a quick tip or want us to develop a database solution, we can help you.

Just drop us an e-mail that describes your problem or need, attach all the necessary files,
and we will send you a quote and time table for the solution.

Small problems will be solved in the same or next day.

VB - Access ¢ Oracle - SQL Server - Web* - Excel & Word Automation
Finance-related databases -« Interfacing with existing systems

Dev Glick on Dev

Expert Consulting Services

telephone: 212-859-3521

http//www.clickondev.com
sales@clickondev.com

ADVISOR.COM

ACCESS-VB-SQL ADVISOR - SEPTEMBER 2001 33

